Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(726): eadf9561, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091405

RESUMO

Immunoglobulin E (IgE) is a key driver of type 1 hypersensitivity reactions and allergic disorders, which are globally increasing in number and severity. Although eliminating pathogenic IgE may be a powerful way to treat allergy, no therapeutic strategy reported to date can fully ablate IgE production. Interleukin-4 receptor α (IL-4Rα) signaling is required for IgE class switching, and IL-4Rα blockade gradually reduces, but does not eliminate, IgE. The persistence of IgE after IL-4Rα blockade may be due to long-lived IgE+ plasma cells that maintain serological memory to allergens and thus may be susceptible to plasma cell-targeted therapeutics. We demonstrate that transient administration of a B cell maturation antigen x CD3 (BCMAxCD3) bispecific antibody markedly depletes IgE, as well as other immunoglobulins, by ablating long-lived plasma cells, although IgE and other immunoglobulins rapidly rebound after treatment. Concomitant IL-4Rα blockade specifically and durably prevents the reemergence of IgE by blocking IgE class switching while allowing the restoration of other immunoglobulins. Moreover, this combination treatment prevented anaphylaxis in mice. Together with additional cynomolgus monkey and human data, our studies demonstrate that allergic memory is primarily maintained by both non-IgE+ memory B cells that require class switching and long-lived IgE+ plasma cells. Our combination approach to durably eliminate pathogenic IgE has potential to benefit allergy in humans while preserving antibody-mediated immunity.


Assuntos
Anafilaxia , Imunoglobulina E , Camundongos , Humanos , Animais , Macaca fascicularis , Plasmócitos , Alérgenos
2.
Cell Rep Methods ; 3(7): 100522, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37533642

RESUMO

Following activation by cognate antigen, B cells undergo fine-tuning of their antigen receptors and may ultimately differentiate into antibody-secreting cells (ASCs). While antigen-specific B cells that express surface receptors (B cell receptors [BCRs]) can be readily cloned and sequenced following flow sorting, antigen-specific ASCs that lack surface BCRs cannot be easily profiled. Here, we report an approach, TRAPnSeq (antigen specificity mapping through immunoglobulin [Ig] secretion TRAP and Sequencing), that allows capture of secreted antibodies on the surface of ASCs, which in turn enables high-throughput screening of single ASCs against large antigen panels. This approach incorporates flow cytometry, standard microfluidic platforms, and DNA-barcoding technologies to characterize antigen-specific ASCs through single-cell V(D)J, RNA, and antigen barcode sequencing. We show the utility of TRAPnSeq by profiling antigen-specific IgG and IgE ASCs from both mice and humans and highlight its capacity to accelerate therapeutic antibody discovery from ASCs.


Assuntos
Células Produtoras de Anticorpos , Antígenos , Humanos , Animais , Camundongos , Linfócitos B , Anticorpos/genética , Receptores de Antígenos de Linfócitos B/genética
3.
Cytokine ; 162: 156091, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481478

RESUMO

RATIONALE: Type 2 (T2) asthma is characterized by airflow limitations and elevated levels of blood and sputum eosinophils, fractional exhaled nitric oxide, IgE, and periostin. While eosinophils are associated with exacerbations, the contribution of eosinophils to lung inflammation, remodeling and function remains largely hypothetical. OBJECTIVES: To determine the effect of T2 cytokines IL-4, IL-13 and IL-5 on eosinophil biology and compare the impact of depleting just eosinophils versus inhibiting all aspects of T2 inflammation on airway inflammation. METHODS: Human eosinophils or endothelial cells stimulated with IL-4, IL-13 or IL-5 were assessed for gene changes or chemokine release.Mice exposed to house dust mite extract received anti-IL-4Rα (dupilumab), anti-IL-5 or control antibodies and were assessed for changes in lung histological and inflammatory endpoints. MEASUREMENTS AND MAIN RESULTS: IL-4 or IL-13 stimulation of human eosinophils and endothelial cells induced gene expression changes related to granulocyte migration; whereas, IL-5 induced changes reflecting granulocyte differentiation.In a mouse model, blocking IL-4Rα improved lung function by impacting multiple effectors of inflammation and remodeling, except peripheral eosinophil counts, thereby disconnecting blood eosinophils from airway inflammation, remodeling and function. Blocking IL-5 globally reduced eosinophil counts but did not impact inflammatory or functional measures of lung pathology. Whole lung transcriptome analysis revealed that IL-5 or IL-4Rα blockade impacted eosinophil associated genes, whereas IL-4Rα blockade also impacted genes associated with multiple cells, cytokines and chemokines, mucus production, cell:cell adhesion and vascular permeability. CONCLUSIONS: Eosinophils are not the sole contributor to asthma pathophysiology or lung function decline and emphasizes the need to block additional mediators to modify lung inflammation and impact lung function.


Assuntos
Asma , Pneumonia , Animais , Humanos , Camundongos , Asma/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Interleucina-13/metabolismo , Pulmão/metabolismo , Pneumonia/metabolismo , Interleucina-4/farmacologia
4.
Infect Immun ; 90(11): e0017922, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36321832

RESUMO

Legionella pneumophila grows within membrane-bound vacuoles in alveolar macrophages during human disease. Pathogen manipulation of the host cell is driven by bacterial proteins translocated through a type IV secretion system (T4SS). Although host protein synthesis during infection is arrested by the action of several of these translocated effectors, translation of a subset of host proteins predicted to restrict the pathogen is maintained. To identify the spectrum of host proteins selectively synthesized after L. pneumophila challenge, macrophages infected with the pathogen were allowed to incorporate the amino acid analog azidohomoalanine (AHA) during a 2-h time window, and newly synthesized macrophage proteins were isolated by orthogonal chemistry followed by mass spectrometry. Among the proteins isolated were interferon-stimulated genes as well as proteins translated from highly abundant transcripts. Surprisingly, a large number of the identified proteins were from low-abundance transcripts. These proteins were predicted to be among the most efficiently translated per unit transcript in the cell based on ribosome profiling data sets. To determine if high ribosome loading was a consequence of efficient translation initiation, the 5' untranslated regions (5' UTR) of transcripts having the highest and lowest predicted loading levels were inserted upstream of a reporter, and translation efficiency was determined in response to L. pneumophila challenge. The efficiency of reporter expression largely correlated with predicted ribosome loading and lack of secondary structure. Therefore, determinants in the 5' UTR allow selected host cell transcripts to overcome a pathogen-driven translation blockade.


Assuntos
Legionella pneumophila , Humanos , Legionella pneumophila/fisiologia , Regiões 5' não Traduzidas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Interações Hospedeiro-Patógeno/genética , Vacúolos/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Sci Immunol ; 5(43)2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924685

RESUMO

Immunoglobulin E (IgE) plays an important role in allergic diseases. Nevertheless, the source of IgE serological memory remains controversial. We reexamined the mechanism of serological memory in allergy using a dual reporter system to track IgE+ plasma cells in mice. Short-term allergen exposure resulted in the generation of IgE+ plasma cells that resided mainly in secondary lymphoid organs and produced IgE that was unable to degranulate mast cells. In contrast, chronic allergen exposure led to the generation of long-lived IgE+ plasma cells that were primarily derived from sequential class switching of IgG1, accumulated in the bone marrow, and produced IgE capable of inducing anaphylaxis. IgE+ plasma cells were found in the bone marrow of human allergic, but not nonallergic donors, and allergen-specific IgE produced by these cells was able to induce mast cell degranulation when transferred to mice. These data demonstrate that long-lived IgE+ bone marrow plasma cells arise during chronic allergen exposure and establish serological memory in both mice and humans.


Assuntos
Alérgenos/imunologia , Imunoglobulina E/sangue , Memória Imunológica , Plasmócitos/imunologia , Pyroglyphidae/imunologia , Anafilaxia/imunologia , Animais , Células da Medula Óssea/imunologia , Exposição Ambiental , Humanos , Mastócitos/imunologia , Camundongos
6.
Allergy ; 75(5): 1188-1204, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31838750

RESUMO

BACKGROUND: Dupilumab, a fully human monoclonal antibody that binds IL-4Rα and inhibits signaling of both IL-4 and IL-13, has shown efficacy across multiple diseases with underlying type 2 signatures and is approved for treatment of asthma, atopic dermatitis, and chronic sinusitis with nasal polyposis. We sought to provide a comprehensive analysis of the redundant and distinct roles of IL-4 and IL-13 in type 2 inflammation and report dupilumab mechanisms of action. METHODS: Using primary cell assays and a mouse model of house dust mite-induced asthma, we compared IL-4 vs IL-13 vs IL-4Rα blockers. RESULTS: Intranasal administration of either IL-4 or IL-13 confers an asthma-like phenotype in mice by inducing immune cell lung infiltration, including eosinophils, increasing cytokine/chemokine expression and mucus production, thus demonstrating redundant functions of these cytokines. We further teased out their respective contributions using human in vitro culture systems. Then, in a mouse asthma model by comparing in head-to-head studies, either IL-4 or IL-13 inhibition to dual IL-4/IL-13 inhibition, we demonstrate that blockade of both IL-4 and IL-13 is required to broadly block type 2 inflammation, which translates to protection from allergen-induced lung function impairment. Notably, only dual IL-4/IL-13 blockade prevented eosinophil infiltration into lung tissue without affecting circulating eosinophils, demonstrating that tissue, but not circulating eosinophils, contributes to disease pathology. CONCLUSIONS: Overall, these data support IL-4 and IL-13 as key drivers of type 2 inflammation and help provide insight into the therapeutic mechanism of dupilumab, a dual IL-4/IL-13 blocker, in multiple type 2 diseases.


Assuntos
Interleucina-13 , Animais , Anticorpos Monoclonais Humanizados , Inflamação , Interleucina-4 , Camundongos
7.
Cell Microbiol ; 17(6): 785-795, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25850689

RESUMO

Bacterial secretion systems play a central role in interfering with host inflammatory responses to promote replication in tissue sites. Many intracellular bacteria utilize secretion systems to promote their uptake and survival within host cells. An intracellular niche can help bacteria avoid killing by phagocytic cells, and may limit host sensing of bacterial components. Secretion systems can also play an important role in limiting host sensing of bacteria by translocating proteins that disrupt host immune signalling pathways. Extracellular bacteria, on the other hand, utilize secretion systems to prevent uptake by host cells and maintain an extracellular niche. Secretion systems, in this case, limit sensing and inflammatory signalling which can occur as bacteria replicate and release bacterial products in the extracellular space. In this review, we will cover the common mechanisms used by intracellular and extracellular bacteria to modulate innate immune and inflammatory signalling pathways, with a focus on translocated proteins of the type III and type IV secretion systems.


Assuntos
Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Imunidade Inata , Inflamação/microbiologia , Fatores de Virulência/metabolismo , Animais , Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Humanos , Inflamação/patologia , Transporte Proteico , Transdução de Sinais/imunologia
8.
Annu Rev Cell Dev Biol ; 30: 79-109, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25103867

RESUMO

Pathogens use a vast number of strategies to alter host membrane dynamics. Targeting the host membrane machinery is important for the survival and pathogenesis of several extracellular, vacuolar, and cytosolic bacteria. Membrane manipulation promotes bacterial replication while suppressing host responses, allowing the bacterium to thrive in a hostile environment. This review provides a comprehensive summary of various strategies used by both extracellular and intracellular bacteria to hijack host membrane trafficking machinery. We start with mechanisms used by bacteria to alter the plasma membrane, delve into the hijacking of various vesicle trafficking pathways, and conclude by summarizing bacterial adaptation to host immune responses. Understanding bacterial manipulation of host membrane trafficking provides insights into bacterial pathogenesis and uncovers the molecular mechanisms behind various processes within a eukaryotic cell.


Assuntos
Fenômenos Fisiológicos Bacterianos , Membrana Celular/metabolismo , Células/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Animais , Autofagia/fisiologia , Proteínas de Bactérias/fisiologia , Toxinas Bacterianas/farmacologia , Transporte Biológico , Permeabilidade da Membrana Celular , Células/ultraestrutura , Citosol/microbiologia , Endocitose/fisiologia , Humanos , Lisossomos/fisiologia , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Fagossomos/fisiologia , Transporte Proteico , Vacúolos/microbiologia , Vacúolos/fisiologia
9.
PLoS Pathog ; 10(7): e1004229, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25058342

RESUMO

Many pathogens, particularly those that require their host for survival, have devised mechanisms to subvert the host immune response in order to survive and replicate intracellularly. Legionella pneumophila, the causative agent of Legionnaires' disease, promotes intracellular growth by translocating proteins into its host cytosol through its type IV protein secretion machinery. At least 5 of the bacterial translocated effectors interfere with the function of host cell elongation factors, blocking translation and causing the induction of a unique host cell transcriptional profile. In addition, L. pneumophila also interferes with translation initiation, by preventing cap-dependent translation in host cells. We demonstrate here that protein translation inhibition by L. pneumophila leads to a frustrated host MAP kinase response, where genes involved in the pathway are transcribed but fail to be translated due to the bacterium-induced protein synthesis inhibition. Surprisingly, few pro-inflammatory cytokines, such as IL-1α and IL-1ß, bypass this inhibition and get synthesized in the presence of Legionella effectors. We show that the selective synthesis of these genes requires MyD88 signaling and takes place in both infected cells that harbor bacteria and neighboring bystander cells. Our findings offer a perspective of how host cells are able to cope with pathogen-encoded activities that disrupt normal cellular process and initiate a successful inflammatory response.


Assuntos
Interleucina-1alfa/imunologia , Interleucina-1beta/imunologia , Legionella pneumophila/imunologia , Doença dos Legionários/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Biossíntese de Proteínas/imunologia , Animais , Humanos , Interleucina-1alfa/genética , Interleucina-1beta/genética , Doença dos Legionários/genética , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Biossíntese de Proteínas/genética , Células U937
10.
Biol Chem ; 392(11): 983-93, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21871011

RESUMO

Cathepsin B has been shown to not only reside within endo-lysosomes of intestinal epithelial cells, but it was also secreted into the extracellular space of intestinal mucosa in physiological and pathological conditions. In an effort to further investigate the function of this protease in the intestine, we generated a transgenic mouse model that would enable us to visualize the localization of cathepsin B in vivo. Previously we showed that the A33-antigen promoter could be successfully used in vitro in order to express cathepsin B-green fluorescent protein chimeras in cells that co-expressed the intestine-specific transcription factor Cdx1. In this study an analog approach was used to express chimeric cathepsin B specifically in the intestine of transgenic animals. No overt phenotype was observed for the transgenic mice that reproduced normally. Biochemical and morphological studies confirmed that the overall intestinal phenotype including the structure and polarity of this tissue as well as cell numbers and differentiation states were not altered in the A33-CathB-EGFP mice when compared to wild type animals. However, transgenic expression of chimeric cathepsin B could not be visualized because it was not translated in situ although the transgene was maintained over several generations.


Assuntos
Catepsina B/genética , Mucosa Intestinal/metabolismo , Transgenes , Sequência de Aminoácidos , Animais , Catepsina B/análise , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Intestinos/ultraestrutura , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Regiões Promotoras Genéticas
11.
Diabetes ; 60(4): 1354-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21307079

RESUMO

OBJECTIVE: Nominally resistant mouse strains such as C57BL/6 (B6) harbor latent type 1 diabetes susceptibility genes uncovered in outcross to disease-susceptible NOD mice. However, identification of possible recessively acting B6-derived susceptibility genes is limited because very few F2 progeny derived from outcrossing this strain with NOD develop spontaneous autoimmune diabetes. Thus, we assessed whether a transgenic T-cell receptor (TCR) disease transfer model allowed the mapping of recessively acting B6 genetic loci that in the proper context contribute to diabetes. RESEARCH DESIGN AND METHODS: CD8 T-cells transgenically expressing the diabetogenic AI4 TCR were transferred into 91 (NODxB6.H2(g7))F1xB6.H2(g7) first-backcross (BC1) females. A genome-wide scan was performed for loci affecting clinical diabetes and insulitis severity. RESULTS: A major locus on chromosome 11 in tight linkage with the marker D11Mit48 (logarithm of odds score = 13.2) strongly determined whether BC1 progeny were susceptible to AI4 T-cell-mediated diabetes. Mice homozygous versus heterozygous for B6 markers of this chromosome 11 genetic locus were, respectively, highly susceptible or resistant to AI4-induced insulitis and diabetes. The genetic effect is manifest by host CD4 T-cells. Microarray analyses of mRNA transcript expression identified a limited number of candidate genes. CONCLUSIONS: The distal region of chromosome 11 in B6 mice harbors a previously unrecognized recessively acting gene(s) that can promote autoreactive diabetogenic CD8 T-cell responses. Future identification of this gene(s) may further aid the screening of heterogeneous humans at future risk for diabetes, and might also provide a target for possible disease interventions.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/fisiopatologia , Animais , Cromossomos de Mamíferos/genética , Feminino , Ligação Genética/genética , Predisposição Genética para Doença , Genótipo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...